
AX~SYMMETRI~ DEFORMATION AND TORSION OF A 
TRANSVERSELY ISOTROPIC CYLINDER UNDER THE 

ACTION OF A POLYNOMIAL LOAD 

(OSESIMMPTRICGNAIA DEFOUIATSIIA I KBUCUENIE 
TRANSVEBSAL'NO IZOTEOPNOGO TSILINDRA POD 

DEISTVIEIY POLINOMIAL'NOI NAGRUZKI) 

PMll vo1.25, No.6, 1961, pp. 1102-1109 

S. Q. LEKHNITSKII 
(Leningrad) 

(Receioed July 8, 1961) 

The paper considers the problem of the elastic equilibrium of a trans- 
versely isotropic cylinder under the action of forces distributed over 
its lateral surface according to an integer polynomial in the distance 
from the end of the cylinder, the forces being independent of the polar 
angle 8. A number of authors have studied various variants of the prob- 
lem of the stress distribution in an isotropic cylinder under the action 
of polynomial loading (Almansi’s problem); the method of solution for 
the axisymaetric case and the appropriate references are indicated in 

Chapter 7 of [l I. The present paper gives a general method of solution 
based on the application of the theory of axisymnetric deformation and 
torsion similar to the method suggested by Lur’e for the solution of the 
problem of an elastic layer; it enables the conditions on the cylindrical 
surfaces to be satisfied exactly, and on the ends approximately, “on the 
average”. 

1. General expressions for stresses and displacements. Let 

us consider an elastic body in the form of a hollow circular cylinder of 
finite length possessing transverse isotropy, i.e. at every point in the 
cylinder there is a plane for which all directions are elastically equi- 
valent; we shall assume that this plane is normal to the axis of the 
cylinder. We shall refer the hody to a system of cylindrical co-ordi- 
nates r, 8, z, with axes as shown in the diagram. 

Let us suppose that the cylinder is subjected to pressures p, q, t 

and p’j q’, t’, which act on the external and internal surfaces, 
respectively (in radial, axial and tangential directions), and which are 
independent of the polar angle 8. 
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We shall assume that the material follows the generalized Hooke’s law, 
and that the induced strains are small, Using the conventional notations 

for stresses and strains, we 
Hooke’s law as follows [ 2 1 : 

write the equations of the generalized 

Here, E, E, are the Young’s moduli for tension-compression in the 
plane of isotropy and in a direction normal to this plane; v, vl, vz, 
are Poisson’s ratios; G, G, are the shear mod&i for the plane of iso- 
tropy and for radial planes, so that 

(1.2) 

We introduce the following notations: a, b denote the internal and 
external radii and 1 the length of the cylinder 

H = Evl + Cl (1 - Y - 2~1~2) 

cL __2GG’U,~1W , 13 =GIE+ 

a =2~E~-G~“~(1+Y) &(1 - Y) 

1 H * &=G, H - 
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Here D2 is the Laplace operator for a function dependent on r only. 

In all cases when the stresses and displacements are independent of 
8 they can be expressed in terms of two functions F(r, z) and +(r, t); 

6, = - lz (2G.f+D2F_t$3 T,,=$-(aD2F- 

bg=$ 2GJg$- 
( uD2~~~~) I a% T6Z =G1= 

Qz =z a (a,D’F + PI g) , T,+, = GD12cp 

Ihe functions F and # satisfy the equations 

(6 +sX2Ds) (& + s,ZD2) F =0, (2 -I- s,2D2) g, = 

Ihe first function F defines the axisymnetric deformation, 
defines the torsion. Evidently, so is always a real number, and it is 
shown in E2 1 that s1 and s 

t 

cannot be purely imaginary. ‘Ihe function F 
differs from that given in 2 1 by a constant multiplier. Hu Hai-chang 

has shown in [ 3 1 that in the general case of the ~ef~~ti~ of a trans- 
versely isotropic body the stresses and displacements can be expressed 
in terms of two functions F and $ which satisfy Equations (1.6), where 

D2 = g + a2 (1.7) 

In the future we shall assume that s1 f s2; the solutions when the 
values of s are equal can be found by a limiting process. 

In order to derive solutions to the problems set we shall need to 
make use of the expressions 

(1.8) 
k=o -k-o 

From the requirement that (1.8) must satisfy Equations (1.6), we 
obtain recurrence differential equations relating F, and & respectively 
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with different suffixes. We can express the final result in a compact 

form by introducing the operators used by Lur’e [l 1 : 

h sinszD = sz - -gDz+$D4_.,. 

cosszD-I-~D~+$DL... (1.9) 

We then obtain 

(where, for convenience, operators and functions are separated by dots). 

Here F,,J &)’ F,,, &J &), 41 are unknown functions of the variable 
r; they must be determined in such a way that all conditions on the 
cylindrical surfaces are satisfied. Substituting these results in (1.4) 
and (1.5), we obtain the following expressions for the displacements and 
stresses : 

Up=& s,i--cOss,zL)-E’,,+sins,zL).~ 
i ’ J 

-t 

-I- s2 (-- co: s,zD=F,, + sins&I+ s,] 

w = II2 (.[ - 
i 

6sIz) [sin s,zD .+ + cos s,zD . $$-I + 

$ (y - 6.~~) (sin s,zD . -$. + cos s,zD . $$)I 

ue = -& (COS s&l +cp,, + sin s,zD a s) (1.11) / 

iJ,=sj 2e;; 
! 

- (U + PSI’) D2] (CO, slzDe fi,, - sin s,zD . g) + 

-I- s2 12G + $ - (a + f3sBz> D2~~cos sgD *F,, - sin s,zD. -f$) 

uz = D2 [si (a, - PA”) [ coss,zD.F,,-ssins,sD. $$f- 

+ % (aI - P1sa2) [cos s,zD .F,, - sin s,zD ‘ s)] 

z ,.z = $- D2 [(a + psi”) (‘sin s,zD . % + cos s,zD . -$$) + 

f (a -j- f3sz2) (sin S,ZD . $ + cos s,zD I -$!$)I 

ret = s,,Cl $ (- sin s,zD . Dg, + cos s,,zD .qJ 

zr8 = GD12 
i 
‘cos s,zD .‘po _t sin sozD. -Em) (1.12) 
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The expression for Ue 
a2/ar2. 

can be obtained from or by replacing d/rar by 

2. Axisymmetric deformation. Suppose that on the cylindrical 

surfaces we are given pressures p and q, which have rotational synnnetry 
and which vary according to a law of integer polynomials in z, t being 
zero. It will be sufficient to consider the case when each of the pres- 
sures is proportional to zk, where k is an arbitrary integer; we can 

find solutions for loads given in the form of polynomials by means of 
superposition. 

We shall consider first the case when the normal pressure is pro- 
portional to an even power of 2, and when the tangential pressure is pro- 

portional to an odd power. The boundary conditions are 

z 2m z 2m-1 
(Jr = P !&m-i ' ( ! rrz = q2m_-1 -j- 

( 1 
, fre = 0 at r = b (2.1) 

z 2m 
Qr = pz; -j- 

( > , r,z = q& + 2m-1 , 
(> 

z,e = 0 at t=a 

In Formulas (1.11) and (1.12) we must set $a = C& = F,, = F,, = 0; 
then ue = re, = 7 ,,e = 0. The expressions for or and r rz in expanded form 
are as follows: 

u r = 2% + g (SJ,, + %F,,) --02 [Sl (a + PSl’) F,, + $7 (a + ps2”) 27201 - 

- $- {2G -+ -&D2 (sl”FiO + S&J --04 [q3 (a + psl”) F,, + 

+ %“(a + l3s,~)F*,l} +...-H- IT&{ 2G + -& D2” (sl*“flF,, + s~*~+V’~,,) - 

_ Dzh‘+z 
[sp+l (a + PSI’) F,, + s p+1 (a + ps2y &,I} + . . . (2.2) 

r r.z = 2; D2 is1 (a + Bsl”) F,, + ~2 (a + Bs~~) J’,,l - 

- $- &D4 IsI3 (a + PSI’) F,, + ~2~ (a + Ps2”) F,,l + . . . 

. . . D2” I+--1 (a + ps12) F,,+ s2*k--1 (~+Ps~~)F~J +. . . 

From conditions (2.1) the last powers of z in (2.2) will be 2m and 
2m - 1. We must therefore set 

D2m+2Plo = l-&+2, D2m+2F20 = C2m+2 (2.3) 

(where A, C are arbitrary constants). Whence, taking into account the 
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structure of the operator D2, we find successively by integration 

D2’nFlo = * r2 + Bzm ln r + A,,,, 

D?m-‘F,o _ A,,+’ r4 + + r2 (In r - 1) + + 
(X22!)” 

r2 + B2m_2 In r -t A2,,--a 

D2”-‘kFlo = A,,+, 

[2”$1 (k + 1) !]B 

b2k+1 
r2k In r - - 

i k! + 

+ k2 r2k + I,k-lB?,,12,, ,]” “k-2 [In r - (k :ki) I ] + 

+ I,k_:FT12i, ,l2 r2k-2 + . . . + B2m<2k+z r2 (In r - 1) + (2.4) 

A 
+ 2n’i2k+2 r2 + B2m-2k In r + A2m_-pk (k=O, 1,2 ,..., m) 

Here Ai, Bi are arbitrary constants, b,‘+ ’ are Stirling’s numbers 

141 
62k+‘=k!‘l+++.. 

( (2.5) 

For k = m - 1 we obtain D2F,,, and for k = m, DOF,, = F,,. The ex- 
pressions for the operators on the function F,, have, of course, the 
same structure as (2.4), except that Ai, Bi are replaced by different 
constants which we shall denote by Ci and Di. 

Setting r = b and r = a in Formulas (2.2), and equating coefficients 

of z2s and z2s- ’ to the given quantities (see (2.111, we obtain the 

equations for the coefficients 

(G - u - ps12) s,am+lA 2m+2 + (G - a - Ps2”) S22m+1C2m+2 + 

+ g (s~~“‘+~B~~ + s~~~+ID~~,) = (- 1)” (am) ! + 

(G - a - ps12) q-‘n+lA zm+2 + (G - a - Ps2”) S22m+1C2m+2 + 

+ $ (s12nz+1B2nl + s2 2n’+‘D2m) = (- I)” (2m) ! +- P-6) 

[(a f PSI’) s12nz-1A?mi_3 + (a f Bs~“) ~~~~~~~~~~~ ] $ + [ (,ct + &“) s12+-1B2nr -i_ 

Q2m-_lb 
f (a -I ps22) s~~~--~D~~I = (- l)m--l (2m - 1) ! 127rr--1 

[(a + $s12) sI*m-JA 277x+2 + (a + pS2*) S22m-1C2m+21 f -k [(a + PSI’) S12m-1B2m f 

+ (a + ps2?) s2*-lD,,] = (- l)“-1 (2n - 1) ! 3 
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Setting r = b and r = 
zzn- 2 

a and equating to zero the 
in. the expression for o, and those of zzR- 3 

for rrz, we obtain four equations which contain the constants A,,, Czn, 

B 2r- 2J2n- 2 in addition to those already found. Proceeding in this way 
from higher to lower powers of z, we eventually arrive at a term in the 
expression for ur which is independent of z, and in this way we obtain a 
set of two equations for two linear combinations of coefficients 
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coefficients of 
in the expression 

(G - 01 - !3sl’) slA2 + (G - a - ps2*) s,C,, SlB” + s2D* (2.7) 

from which the coefficients can be determined uniquely. 

As a result we can determine ur, or, 00, T rz accurately, but an arbi- 
trary constant (which we can take as A, or C, or any linear combination 
of these constants) will occur in the expressions for 20 and oz. ‘lhe 
arbitrary constant can be found by equating the vector sum of the forces 
on one end of the cylinder to the given value, in particular to zero; it 
is not difficult to show that the forces on the other end of the cylinder 
then balance the given external loading. ‘Ihe end section z = 0 
plane. 

remains 

and the 
have the 

If the normal pressure is proportional to an odd power of t 
tangential pressure is proportional to an even number, then we 
conditions 

at r=b 
P-8) 

at r=a 

Ibis problem can be solved in a completely analogous way. We equate 
to zero the functions &,# $r, F,,, I$,-, and we obtain the same expres- 

sions (2.4) for d”-zkFll, D2”zkF21. 

In this case all the coefficients except A,, Co can be found from the 
boundary conditions (2.81, and the expressions for the stresses contain 
no arbitrary constants. On the end z = 0 the stress oZ is zero, and on 
the other end z = 1 it balances the external pressure q. 

It is not difficult to show, by making use of Expressions (1.3), that 
when s1 and s2 are not equal the determinants of all the sets of equa- 
tions are nonzero. 

For a solid cylinder (a = 0) the above formulas can be simplified 
considerably, since all terms in (2.4) containing logarithms must be 
discarded, since they lead to singularity at r = 0. 

Exaapie. A hollow cylinder subjected to a noraal pressnre distributed 
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over its external surface according to a parabolic law (see Figure). 

We have: II= 1 

3\2 

P=-n3 2. ’ ( J q = p’ = q’ = 0, q?o = (PI = F,, = Fzl II 0 

D4Flo = Aa, DP F,. = C4 

‘4 (2.9) 

F-20 = 2 r* + 2 r2 (1 nr-l)+~~~+D,tnrfCo 

After finding the constants from the boundary conditions, we finally 
obtain the following expressions for the stresses and displacements: 

+ (1 + v) a2 (-------.- 
b2 - az 

+ a’i: F “,/ a .+ - In r - 1 >I} (2. IO) 

nzb2 El 
$2 = (b2 - a2) I” E (I- vpz) I 

(1--v)r2+ (I+ v)a*+Z(i +Y) a”jln r- 

b3 In b - a2 In a - --. -.. ) + c (1 - WJZ) ] b”--a3 , 

z,,= 0 

n&a 
% = - E (b” _ a2)p 

~~~~(i-~)r-i_(l+~)~~+~~~[fl-~)(~+aP)~- 

-(R--y) r3+(1+2’)~]+~~a’[(l--v) b21nLl$1na r-/--(1+-V) X 

- v) r2 + 2 (I + Y) a2 In r + C] , 

(2. 11) 

The arbitrary constant C is found from the conditions on the ends; if 
there is no externally applied pressure here, we obtain 

C = - 0.5 h (b2 + a”) ?,= l---y 
1 - YlV2 > 

(2. 12) 

For 8 solid cylinder we find from (2.10) and (2.11) that 
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(2. 13) 

22 + 2 (P - 9) 1 , ~~ = - 5 za + %(ba - 39) 
3 

, CT* = $z(hP+C) 

3. Torsion. Suppose that on the surfaces r = b, r = a of a hollow 
cylinder only the pressures t are applied (see Figure) which are inde- 
pendent of 8 and which are distributed according to a polynomial law. 
(he end will be assumed to be free from load and the other will be 
assumed to be fixed. 

Here again it is sufficient to consider the case of a load pro- 
portional to some power of z. Let us suppose that this is an even number. 
we have the boundary conditions -- 

(3, = z,, = 0, 
z ml 

z,e = tsm -i_ 
( > 

at r=b 

0, = z,, = 0, 
z 2m 

z,e = i&’ -j- 
( ! 

at r=a 

In Formulas (1.11) and (1.12) we must set 

F,, = F,, = F,, = F,, = ‘pl = 0, cr, = U@ = uz = z,,= 0 

The expressions for the displacements uB and the stresses r re in 
panded form can be written as follows: 

(3.1) 

ex- 

d 
ue = dr ‘PO [ 

-$D%j,+...+(-1) (3.2) . k$&D2”qo +. . . 1 
z re = GD12 ‘p. - qRp,+ . ..+(- qk$g D2k~o+ . . . 1 (3.3) 

we 
If we discard powers of z higher than 2m in the expression for rre, 
obtain the following equation for 4: 

Whence 

D12D2m+2 
‘PO = 0 (3.4) 

A 
D2’?p0 = * r2 + A2m+2 

A A 
D2Ypo = $$ r4 + * r2 + B,, In r + A,, (3.5) 

. ; . . . . . . . . . . . . . . . . . . . . . . . . . 

D2m-2k 
A 

‘po 

2m+4 
A 

= [2k+2 (k + 2)!]” 
r2kS4 + 2m+2 

[2k+l (k + l)l]Z 
+-t2 + 

A 
+ A+ + . . . 

(2Q!)a 
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B ‘A 
. . . + 2mi2k+2 r2 (In r - 1) + 2m;2k+2 r2 + B2m_2k In r + &,,_-2k 

2 2m 2k 
A 

2m+4 
A 

‘I D - ‘po = 22”+2k! (k+q! 
rzk+z + 2mf2 

22” (k - I)! (k + I)! 
r2k + 

. . . + ‘2m;2k+4 r2 (ln r __ a, + A2m;2k+4 r2 + B2m;2k+2 _ 2B2;2-2k 

(k = 0, 1, 2, . . . , m) 

If we now satisfy the conditions (3.1) we obtain the equations 

(D12D2mqJo),=~ = * (D12Dmcpo)p=a= g+ 

(3.6) 

(3.7) 

D12D2m-2cpo = 0, D12D2m'-4~o = 0, . . ., D12cpo = 0 at r = h and r = n 

From these equations we determine successively the constants Azr+ 4, 
B . A 2r’ 2r+ 2’ B . 2r_2; ***, A,, B,; A,, B,. The coefficient A,, does not 

appear in the formulas, and A, appears only in the expression for the 
displacement; we determine A, from the requirement that some circle r=A 
in the plane of the fixed end (for example, the external or internal con- 
tour of the section) is not displaced. On the free end reZ = 0; on the 
fixed end this stress balances the external pressure. 

If the stress t is proportional to an odd power of z the problem can 
be solved in a completely analogous way. In Formulas (1.11) and (1.12) 
we must equate to zero all functions except &. In the expression for 
rBZ there will appear an arbitrary constant which must be found from the 
requirement that the torque on the free end is zero. 

Exarple. A hollow cylinder subjected to torques applied over the ex- 
ternal surface according to a parabolic law. 

We have a = 1 

t’ = 0, (PI -0 

D12D4cp, := 0 

(3.8) 

Raving determined the four constants from Equations (3.7). we can 
find the expressions for the stresses 
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- (b2 + a*) (r4 + 3a4)]} 
t2b” 

%Z = (bd _ a4) 18 

2 b4 + a2b2 + 4a4 
b2+ a2 r 

As re might have expected, this result coincides with that obtained 
by another method [ 5 1 , 
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